

KNIME Noding Guidelines
V2.5 –November 2015

This document describes best practices for the development, documentation and
deployment of KNIME nodes, plug-ins and features. Some of the items below are
designed to ease usage of new KNIME modules whereas others target interoperability
and maintenance. In the following, the term “KNIME modules” refers to nodes, plug-
ins or plug-ins grouped into features that form a functional entity.

Table of Contents

Changelog ... 2

General Guidelines ... 3

Installation ... 3

Plug-in and Feature Development .. 4

KNIME User Experience ... 4

Nodes ... 6

Look & Feel .. 6

Execution Behaviour ... 6

Data Handling .. 6

Row ID .. 7

Configure .. 7

Execute ... 8

Logging ... 8

Dialogs ... 9

Comprehensive Layout .. 9

Documentation .. 9

Modal Sub-dialogs ... 9

Loading and Saving.. 10

Views ... 11

Open View & Execute .. 11

Open View & Reset .. 11

Several View Instances Per Node ... 11

Loading and Saving... 11

HiLiting .. 12

Listening ... 12

KNIME Noding Guidelines – Page 2

Handling ... 12

Reader Nodes .. 13

Writer Nodes ... 13

Data Types ...14

Predictive Analytics Conventions .. 15

Learners .. 15

Predictors .. 15

Chemistry Conventions ...16

Supported Types .. 16

Handling of multiple representations – sets/lists of cells .. 17

Reading & Writing .. 17

Fingerprints .. 17

Testing & Certification ... 17

Adapter Cells and autoconversion .. 18

Node Checklist .. 20

Code ... 20

Documentation .. 20

Dialog ... 20

View .. 21

Execution ... 21

Testflows .. 21

CHANGELOG

 Version 2.5 (November 2015)
o Updated adapter cell and auto-conversion section

 Version 2.4 (April 2015)
o Added section about expected startup behavior

 Version 2.3 (October 2014)
o New sections about expected behavior of reader and writer nodes

KNIME Noding Guidelines – Page 3

GENERAL GUIDELINES

INSTALLATION

 A new KNIME extension should be installable via the Eclipse update mechanism.
 An installed extension may require an external setup of the system (e.g. setting

LD_LIBRARY_PATH or the presence of an external executable/application).
However, if these requirements are broken (e.g. path not set), the extension
should report an error message (e.g. the node fails during execution or the
renderer is disabled; it should also set an appropriate error message to the
NodeLogger). In no case it should crash or freeze KNIME.

 The installation of an extension must not launch other installers or make
modifications to the system other than in the eclipse installation directory.

 An extension must not require any changes to the KNIME launch mechanism,
i.e. no changes to the knime.ini file or special start-up wrappers are required.

 An installed KNIME extension should continue to work properly when the
underlying Eclipse or KNIME version is updated (minor updates).

 Minor updates to the KNIME extension should be update-able through the Eclipse
update mechanism.

 KNIME extension should not attempt to write into the installation directory during
runtime. (Users might not have write permissions, depending upon where KNIME
itself is installed on the file system.)

 Installation of an extension should not alter the behavior of KNIME at start up (for
instance by asking for a license!). If a license is missing, the corresponding node(s)
can report this before execution or during/after configuration. (This avoids having
to go through several of these dialogs before KNIME starts for the first time.)

 Distributions of KNIME with additional 3rd-party extensions should always be
based on a clean KNIME product as distributed on the KNIME website. There is no
need to build own products. It is, of course, preferable to point users to your own
update site.

 Nodes from 3rd party extensions should all be grouped within their own (usually
top-level) category in the Node Repository. Moving nodes into existing, internal
KNIME categories makes it impossible for users to identify (and find) nodes
contributed by a specific vendor (and is in fact not possible any more since KNIME
2.8).

 Backwards Compatibility: Nodes whose settings have changed from one
version to another (more or different configuration possibilities) should be
backward compatible. If possible the new version should provide default values for
the new settings fields. These default values should cause the previous behavior of
the node, and avoid exceptions if the new value cannot be found in the settings. If it
is not possible to make the new version backward compatible with the old version
in the way described above, the old version of the node should be moved into an
extra plugin (deprecated) or put into a separate source folder (e.g. “src-
deprecated”) and removed from the node repository. The new version should be
registered to the node repository. Using this mechanism, old workflows will load,
because the old node can be found in the deprecated plugin, but all new workflows
will use the new version, since there are no means to use the old version of the node
in the GUI.

KNIME Noding Guidelines – Page 4

 Nodes that should not be used in new workflows any more (e.g. because there is a
better replacement or they computed wrong results) should be deprecated. This is
achieved by
1. adding the attribute deprecated=”true” to the <knimeNode>-element of the

XML description file, and
2. by removing it from the org.knime.workbench.repository.nodes-extension point

in plugin.xml. The node classes themselves must not be deleted so that existing
workflows still load but the old node does not show up in the repository any
more.

STARTUP

 Plug-ins or nodes should not contact external services (e.g license servers) while
KNIME or a workflow is loaded. If they really need to do so, a missing internet
connection or unavailability of the required service must not delay startup or
workflow loading.

 Extension must not pop up windows during startup. Instead they should use the
org.knime.workbench.ui.StartupMessage extension point.

PLUG-IN AND FEATURE DEVELOPMENT

 Plug-ins in Eclipse can either be present as directories or Jar files in the
installation. If your plug-in does not contain any external libraries (JARs or
dynamic libraries) or resources, it should be installed as a single Jar file. For this,
the plug-in's classpath (in the Runtime tab of the Manifest Editor), should only
contain “.” as single entry and in the Build tab there should only be an entry for “.”,
too. In the feature specify to not unpack the plug-in during installation. If you have
external libraries, use a single Jar file for your classes in addition to the external
libraries and let the plug-in be unpacked in the feature.

 If you are using external libraries, first make sure there is not already an Eclipse
plug-in available that contains the library (Eclipse Orbit is a good source), which
you can use. If you are using a library that may be used by others, then create a
separate plug-in containing only the library and depend on it in your node plug-in.
Try not to use any external libraries in node plug-ins if possible, because that may
cause strange class loading problems and break other plug-ins using the same
library.

KNIME USER EXPERIENCE

Using KNIME should be as easy as possible. Nodes which can guess their settings
should do so if there is clear, unique preference for default settings. Dialogs that only
have to be opened and closed before the node can be executed (because they guess the
settings but force the user to open the dialog) should be avoided. The goal is to allow a
fast creation and execution of workflows. Users should not be forced to manually set an
option which can be automated. However, at the same time, nodes should not
automatically set an option which could lead to confusion or significant waste of
computing cycles.

When a node is first dragged onto the workbench, no node settings are set. There are
three possible configuration scenarios (types of actions required inside a node – some
of these may co-occur in a given node!):

1. Auto-Configuration

KNIME Noding Guidelines – Page 5

The node performs a defined operation on a column of a certain type. The
configure method is the only place where you can determine if the input table
has one or several columns of the compliant type:

a. Auto-configure: if there is only one column of the desired type
available – choose it.

b. Auto-guessing: if there are several compliant columns, choose the first
one and set a warning in order to inform the user about this selection.

Example: DecisionTreeLearner (auto-configure/auto-guessing of
NominalValue column as class column), CDK Translators (auto-configure/auto-
guessing of CDK column).

2. Standard Settings
Learner nodes often have many possible parameters and a do-nothing-
configuration is impossible. But usually there are standard settings, which
lead to reasonable results for most data and/or define a standard behavior for
the underlying algorithm. If standard settings are possible, apply them in order
to allow execution of the node with these standard settings without forcing the
(possibly inexperienced) user to simply confirm them.

Example: DecisionTreeLearner (use of standard settings like gain ratio as the
quality measure and no pruning)

3. User Action Required

For some nodes no reasonable settings can be guessed and a configuration
where the node has no effect on the data is not possible. In this case, the node
should stay red (unconfigured) in order to signal to the user that the settings
have to be adjusted. When the dialog opens the default settings are such that
they would not have any effect on the data. Thus, the user is forced to adjust the
settings in the desired way in order to achieve any effect on the data.

Of course, the above-mentioned scenarios are not exclusive, i.e. a node can fall into
several categories, e.g. apply standard settings and perform some auto-
configuration/auto-guessing at the same time, as demonstrated in the example of the
DecisionTreeLearner.

KNIME Noding Guidelines – Page 6

NODES

This section describes the expected behavior of a single node. This includes the results
of the execution, the dialog and (if applicable) the view.

LOOK & FEEL

 Each node should have an icon (16px * 16px), which illustrates the functionality of
the node. Reusing icons (from KNIME or own icons) should be avoided whenever
possible.

 An icon should also be assigned to categories.
 A node should report its progress in the progress bar; provide an explanatory

message whenever possible. This is accomplished by
ExecutionContext#setProgress(double progress, String message).
If the task of the node consists of several subtasks, the ExecutionContext can be
used to create sub-progress monitors with
ExecutionContext#createSubprogress(double d), where the argument
in [0,1] defines the fraction of the whole task.

 It must be possible to cancel the node during execution without long delays. The
call to ExecutionContext#checkCanceled will throw a
CanceledExecutionException which is handled by KNIME.

 Every node should have comprehensible and extensive documentation for the Node
Description view, which has to be located in the *NodeFactory.xml file, and
should describe what the node does, which options are available in the dialog and –
if the node has view(s) – what is displayed in the view(s).

 Port sorting: If a node has ports of different types, then they should be sorted in the
following way: For out ports the data ports should be at the top and other port
types towards the bottom. For in ports this is vice versa: data ports towards the
bottom and other port types towards the top. (This avoids crossing connections
between learner and predictor nodes.)

EXECUTION BEHAVIOUR

DATA HANDLING

 A node should be able to handle empty input tables (with no rows and/or no
columns). Usually an empty output table is created, in some special cases the node
may raise an exception and tell the user that it could not execute due to missing
input data.

 A node should be able to handle tables containing missing values. Either the
missing values can be handled in some way or the node refuses to execute and tells
the user that he/she should remove the missing values (e.g. by using the Missing
Value node).

 By default the columns of the input table should be retained in the output table. If a
column is generated from other column(s), a node can offer an option to either
replace or retain the used columns.

 Columns whose types are not handled by the node should be ignored, but passed
through the node and not removed.

 A node should generally avoid the use of temporary files – but if unavoidable it
must take care to close and delete them. Temporary files shall be created in the
directory represented by System.getProperty("java.io.tmpdir"). (This
variable can be changed in the KNIME preferences.) The methods in

KNIME Noding Guidelines – Page 7

org.knime.core.util.FileUtil take care of removing temporary files and
directories and use the anticipated locations.

 Proper handling of KNIME data tables is supported by the use of
BufferedDataTable, BufferedDataContainer, and ColumnRearranger.
These tools take advantage of intelligent memory caching functionality inherent in
KNIME and are optimally designed for the efficient manipulation and creation of
data tables.

 When columns are added, changed, or removed, do not copy the table, but use the
ColumnRearranger instead.

 Do not store any tables as member variables. If a view displays the incoming data,
copy reasonable portions of it into a BufferedDataContainer, let the user
configure how many rows should be displayed but use a reasonable small default
value (2500 is recommended) and warn the user when rows are skipped.
(Displaying millions of data points results in visual clutter and does not support
understanding of the data.)

 A node implementation must not cast the elements of a data row to specific cell
implementations. Instead it should always refer to the corresponding DataValue
interface (as there may be more than only one data cell implementation). The
following code is error-prone:

int x = .. // index of column containing DoubleValues

for (DataRow r : inData[0]) {

 DataCell cell = r.getCell(x);

 if (!cell.isMissing()) {

 // WILL FAIL FOR OTHER DOUBLE VALUE IMPLEMENTATIONS

 double d = ((DoubleCell)r.getCell(x).getDoubleValue());

 // do something with d

 }

}

A correct implementation would be:

 double d = ((DoubleValue)r.getCell(x).getDoubleValue());

ROW ID

 If the incoming table is updated the row IDs should be preserved in the output
table whenever possible.

 New row IDs should only be generated if new tables are generated. It is
recommended to use the pattern “RowXX” for the row IDs (counts start at “0”!).
Use the static method RowKey.createRowKey(int) to ensure compliance.

CONFIGURE

 The configure method should check for columns the node can work with. If there is
no such column, throw an InvalidSettingsException with a detailed
message.

 In the configure method it should be checked – if necessary – if the incoming table
spec fits the user settings or if it contains columns the node can work with.

KNIME Noding Guidelines – Page 8

 Provide output table spec as complete as possible, i.e. also try to provide domain
information such as possible values for nominal columns and lower and upper
bound for numerical columns.

 See also the section on KNIME user experience, above.

EXECUTE

 All time-consuming tasks and calculations should happen in the execute method.

 Poll the cancel status regularly, by calling

ExecutionContext#checkCanceled().

 Incoming data tables can be arbitrarily large therefore do not keep them in memory
and avoid unnecessary iterations.

 Before accessing the value of a DataCell, check if it is a missing value.
 Report progress by using ExecutionContext#setProgress.

LOGGING

 Do not use System.out or System.err, but rather the KNIME built-in logging
mechanism via org.knime.core.node.NodeLogger.

KNIME Noding Guidelines – Page 9

DIALOGS

COMPREHENSIVE LAYOUT

 The dialog should be comprehensive and should not change layout when different
input tables are available. Grey out options which are not applicable instead. (Do
not surprise the user with unexpected changes.)

 Each input field should provide a label which (very) briefly explains the input.
 Resizing of the component should not destroy the layout of the dialog.

DOCUMENTATION

 Each option in the dialog should be explained in the node description using the
<option>-tag in the *NodeFactory.xml file.

MODAL SUB-DIALOGS

 Sub-dialogs should be used as rarely as possible. Input fields can either be grouped
inside one panel or by using additional tabs (especially useful for expert settings). If
sub-dialogs are unavoidable they must be modal, i.e. they open and remain in front
of the parent dialog and disable the parent dialog. For example:

// figure out the parent to be able to make the dialog modal

Frame f = null;

Container c = getPanel().getParent();

while (c != null) {

 if (c instanceof Frame) {

 f = (Frame)c;

 break;

 }

 c = c.getParent();

}

// pop open the advanced settings dialog with our current

// settings

JDialog dialog = new DerivedJDialog(f);

dialog.setModal(true);

dialog.setVisible(true);

KNIME Noding Guidelines – Page 10

LOADING AND SAVING

 Loading and saving must work correctly, i.e. the settings are stored and restored on
re-opening the dialog and if the workflow was saved and re-opened.

 Do not rely on the settings creation of your node model (e.g. it is possible to store
node settings in the dialog, change them in a text editor and load them again).

 Throw a NotConfigurableException after loading all settings if the user
cannot make a valid choice, e.g. if no column of correct type is in input data table
spec. Provide a comprehensible message for the user. See also the section on
KNIME User Experience.

KNIME Noding Guidelines – Page 11

VIEWS

 The view must resize properly.
 The KNIME built-in view properties color, size and shape should be supported

where possible.

OPEN VIEW & EXECUTE

 It should be possible to open a view before execution of the underlying node
without any exception. (KNIME makes sure nothing is displayed.)

 It should be possible to execute the node while the view is opened. (After execution
is done, the view will be notified.)

 All time-consuming aspects of a view should be created during the execution of the
node to ensure that the view opens instantaneously.

 Views are updated asynchronously to node execution. This means that in general
the model must not provide information to the view before it has been fully created.
Common errors are to build the view data during execute in several steps using an
instance variable that the view can access. During a view update the view may now
see incomplete data and even fail with e.g. ConcurrentModificationExceptions.
Instead use a local variable in execute and assign it to the instance variable just
before execute finishes. Exceptions are interactive views that display data while the
node executes. Also in such cases make sure that the data provided to the view is
consistent and does not change while the view is reading it.

OPEN VIEW & RESET

 It should be possible to reset the node while the view is opened.
 The view must then clean up all its displayed content.

SEVERAL VIEW INSTANCES PER NODE

 Several view instances for one node should be possible and independent of each
other.

 Selection only happens locally in one view instance.

LOADING AND SAVING

 View content must be restored when an executed workflow is re-opened.
 Hilite status must be reset for a newly opened workflow.

KNIME Noding Guidelines – Page 12

HILITING

LISTENING

 Views should support hiliting as a listener when appropriate.
 On opening a view, the current hilite state should be displayed correctly.
 If a hilite event is received for a row, it should immediately be visible in the view.

The standard KNIME visual variables for hilite should be used
(ColorAttr.HILITE).

 If an unhilite event is received for that row, it should be displayed like the other
unhilited data points (e.g. normal, faded or hidden).

 A clear hilite event should result in all displayed rows being displayed as unhilited.
 In order to detect the hilite status of a data point in the paint method, do not ask

the HiliteHandler each time, but store the hilite status in the model.
 Aggregating nodes should use hilite translators to forward hilite events for their

output data to the input data table(s).
 If a view listens to HiLiteHandler(s) from input ports, the listener has to be

deregistered from the old HiLiteHandler and registered with the new
HiLiteHandler in the modelChanged method. Be aware, that the HiliteHandler
can be null.

HANDLING

 A view should support – where possible – the triggering of hilite for selected rows.
Standard KNIME visual variables should be used for displaying selected, hilited
and selected&hilited.

 A hilite menu should be provided with at least the following entries:
 hilite selected
 unhilited selected
 clear hilite

 The use of predefined names defined by HiLiteHandler.HILITE_SELECTED
etc. is highly recommended.

 It is also recommended to provide a menu in the menu bar and a context menu.
 Hilite events triggered in a view should only be sent to the handler and not be

executed in the view until the event comes back through the listener interface (that
means the view (if it is a listener) will also receive hilite events it triggered itself).

KNIME Noding Guidelines – Page 13

READER NODES

For nodes that read data from external sources, some additional rules apply:

 If possible, a reader node that reads from a single source should be able to read also
from URLs (such as file, http, knime, or ftp) in addition to local file system paths.

 Reader nodes must not check the existence of the input sources while loading
settings. They may check if the source location has a valid syntax but not test its
existence. This should be done during configure(). (Reason being that settings
may be loaded into a workflow, whereby the file isn't present on the hard disk – in
this case the node should successfully load all settings but fail during configure()).

 The settings in the dialog of a reader must be savable even if the source location
does not exist. The dialog should show a warning label, though.

WRITER NODES

For nodes that write data to external resources, some additional rules apply:

 Every writer should support writing to arbitrary URLs (if applicable) in addition to
the local file system. It should support especially the file and the knime protocols
but also be able to handle file system paths. The node should store local file system
paths as entered by the user and not automatically convert it into file-URLs.

 Every writer node should have an option whether existing destination files should
be overwritten or if the node should fail in this case.

 The dialog should check for file existence and display a warning label if the file
exists and overwriting is disabled (consider using the class
org.knime.core.node.util.FilesHistoryPanel). The settings in the dialog of
a writer must be savable even if the destination file exists and overwrite is disabled.

 Writer nodes should check for existence of the destination file in configure().
Depending on the overwrite policy they should either fail with an error message
telling the use that the destination file exists and cannot be overwritten due to the
user setting, or a warning that the file is going to be overwritten (consider using
org.knime.core.node.util.CheckUtils.checkDestinationFile).

 During execute the existence of the destination file (if on the file system) must be
checked and the option from the dialog must be respected: if the file exists and can
be overwritten the node should not display a warning (as it's a completely normal
operation). If the file exists and must not be overwritten the node must fail with an
error message, saying that the destination file exists and cannot be overwritten due
to the user setting. The error message should show the file's path (consider using
org.knime.core.node.util.CheckUtils.checkDestinationFile).

 Non-existing directories should not be created automatically, the node should fail
instead.

 If the user cancels the node after a file has been created it should be deleted. If the
writer creates multiple files at least the last recently created file should be deleted
(usually it’s not feasible to keep track all created files).

 Remote files (denoted e.g. by ftp or knime on a server, etc.) are always overwritten
without any warning because it's not possible to determine if they exist by just
using the URL.

KNIME Noding Guidelines – Page 14

DATA TYPES

 If new types are introduced, they should have an icon.
 New types should provide a comparator. If no comparator is provided, the standard

comparator based on the string representation will be used. Therefore sorting will
be possible even without a custom comparator.

 In addition a specialized serializer is recommended to ensure good performance. If
possible do not rely on Java built-in serialization, since it is very slow and may
break if the serialized classes change. Even for simple cells (holding an integer or
an enumeration), this is recommended.

 Creation of a renderer is recommended for new data types. Note that if the renderer
paints an image, then it is highly recommended to extend the
AbstractPainterDataValueRenderer. If it displays some kind of textual

representation then the DefaultDataValueRenderer should be used.
 Renderers should be registered at the corresponding extension point

(org.knime.core. DataValueRenderer).
 If the new type claims to be compatible to other types a lossless conversion between

those types must be possible (for example every integer can be converted to a
double without any loss – but not vice versa). Although almost every value can be
displayed as a String, it is not a String, thus it should not implement the
StringValue interface.

KNIME Noding Guidelines – Page 15

PREDICTIVE ANALYTICS CONVENTIONS

LEARNERS

For so-called “learner” nodes that create a predictive model (decision tree, regression,

clustering) an output table with parameters of the learned model should be provided.

The contents are specific to the used algorithms. Here is an example for regression

algorithms:

Parameter Value

x 1

x^2 2

Squared error 0.34

… …

PREDICTORS

For the corresponding predictors the following rules should be obeyed:

 All prediction columns should be named identical “Prediction (class)”, where

“class” is replaced by the corresponding column from the model.

 The user should be able change the name of the prediction column, e.g. in order to

add the algorithm name (“Prediction (class) - Naive Bayes”).

 Wherever applicable class probabilities/confidences should be output on demand.

The columns should be names “P (column=value)”, e.g. “P (sex=male)” or “P

(sex=female)”.

 The user should be able to add an optional suffix to each of these column, e.g. in

order to specify the method that has been used (decision tree, neural network, …)

KNIME Noding Guidelines – Page 16

CHEMISTRY CONVENTIONS

This section summarizes the conventions regarding chemical types to ensure
interoperability of different KNIME software partners.

SUPPORTED TYPES

 The standard molecular formats are:
 SMILES
 SDF

 Structure block (Mol) can be extracted using standard KNIME node
 SDF cells must be terminated by $$$$ characters

 The standard reaction format is

 RXN

 Biological formats are available in org.knime.bio.types, currently only PDB. No
standards were discussed as of now – please contact KNIME if that is required.

 Types in KNIME are simple textual wrappers (no interpretation!) A simple test
should be able to read any of the above formats, write it out, and the result should
be an exact textual match!

 Every node working on molecular representations should
 Accept and create if possible the standard formats (e.g. not SMILES if 3D

structures are created/expected)
 If necessary accept and create (preferably) no more than one partner-specific

format (Maestro, …) – these will not be part of the base chemistry classes (except
for cases where they are of general interest; see below).

 Types of possibly general interest should be part of KNIME.
 If an extension is able to render any of the standard types (e.g. SD), it should

register a renderer at the DataValueRenderer extension point.
 Each renderer implementation should make any attempt to not block or crash

KNIME if it is unable to render an entry (because of a missing license, e.g.).
Instead it should indicate the problem in the drawing area and issue an error to the
logging facilities (once!)

 If you are supporting other types, make sure to use the ones available in
org.knime.chem.types or inform KNIME to include it if there is a remote chance
that others may also use this type.

As of KNIME 2.9 the following types are part of KNIME:

– Sdf
– Mol
– Ctab
– Smiles
– CML
– Mol2
– Sln
– Rxn
– Smarts
– Inchi

Please check org.knime.chem.types for an up-to-date list of currently supported
types and contact the KNIME team before adding own, new types.

 Type conversion nodes should be provided if new types are introduced
 A “Molecule to X” converter, taking ALL standard types as an input,

KNIME Noding Guidelines – Page 17

 A “X to Molecule” converter, producing ALL standard types on the
output.

 All nodes should provide clear guidance about the expected and generated type:
 Tooltips on output, e.g. “table with additional X type column”
 Clear error if compatible type is missing, e.g. “expecting SDF, Maestro, or

SLN column”
 Respect the following convention

 “Molecule” stands for any one of the standard molecule types.
 Individual types are: SDF, Smiles, Mol2, ChemML, or “X” (where X is

descriptive and sufficiently unique).

HANDLING OF MULTIPLE REPRESENTATIONS – SETS/LISTS OF CELLS

 In case of multiple representations of a molecule (e.g. node computed
conformations)

 If at all possible create one row for each conformation and add
information about original row ID (similar to a pivoting node)

 Alternatively use “List of DataCells” (available in KNIME 2.0) to add
several representations of the same type.

 KNIME allows composing/decomposing such sets/lists

READING & WRITING

 Readers
 Validate format
 Offer the ability to extract additional information
 Leave textual information intact!

 Writers
 Offer to combine additional columns into the type (e.g. SD cell alone or

Mol-Cell with add’l cols)
 Otherwise leave textual information intact!

 Nodes computing additional information for molecular types (3D conformation…)
 Create a new column holding cells of the same type with this additional

information “inserted”.

FINGERPRINTS

 Use Fingerprint cell implementations available in KNIME
 DenseBitVector, SparseBitVector for {0, 1}
 DenseByteVector, SparseByteVector for counts (0-255)

 Different operations available on fingerprints (see package description), e.g.
 concatenate, and, or, xor, mask

TESTING & CERTIFICATION

 Developers should whenever possible submit test workflows for their own nodes
 KNIME may not have suitable test structures (format, specific properties)
 Some testing will be done by non-chemists.

 Developers should submit test cases
 Allows to test interoperability of 3rd party tools

KNIME Noding Guidelines – Page 18

ADAPTER CELLS AND AUTOCONVERSION

Since molecules can be represented in different formats and especially vendor-specific
formats, building complex workflows may require lots of converter nodes. Therefore an
auto-conversion mechanism can be used. Auto-conversion is supported by so-called
adapter cells that allow storing the converted molecules in an existing column next to
other representations of the same (!) molecule.

For the complete API of adapter cells and type converters see the current Javadoc.
Here are some rules that every vendor should adhere when using adapter cells.

 Check the incoming data types for isCompatible and isAdaptable when
handling adapter cells.

 In execute either cast data cells to desired value type when dealing with “plain”
cells or use the adapter access methods (getAdapter) when dealing with adapter
cells.

 Never add any of the standard representations into an existing adapter, only
vendor specific formats are supposed to be in adapter cells. Otherwise
downstream nodes may not use the original representation but instead use a
standard representation converted from a vendor specific format.

 Your own renderers should be aware of adapter cells.

In case you have your own molecular data format and you need to convert the standard
formats (SDF & Smiles) into your format, you should provide your own adapter cell
implementation that implements the same data value interfaces as the “normal” cell.
The preferred value of the adapter cell should indicate the original source of the
molecule. I.e. if you see a SmilesAdapterCell you know the original representation was
Smiles. Likewise if you see a CDKAdapterCell this means that the molecule was created
from scratch by CDK and all other representations in the adapter were derived from it.

When creating the automatic type converter, consider the following cases:

1. The input is already adaptable to your desired type. Then no conversion is
necessary and you can use the input as-is (see example below)

2. The input is compatible to your desired type. Then you should create an adapter

cell that wraps the normal cell.

CDKTypeConverter createConverter(DataTableSpec tableSpec, int columnIndex) {

 DataType type = tableSpec.getColumnSpec(columnIndex).getType();
 if (type.isAdaptable(CDKValue.class)) {

 return new CDKTypeConverter(type) {

 public DataCell convert(final DataCell source) throws Exception {

 return source;

 }

 };
 } …

 else if (type.isCompatible(CDKValue.class)) {

 return new CDKTypeConverter(CDKAdapterCell.TYPE) {

 public DataCell convert(final DataCell source) throws Exception {

 return new CDKAdapterCell(source);

 }

 };
 } …

KNIME Noding Guidelines – Page 19

3. The input is a writable adapter that contains types you can convert from. Then

add the converted representation to the existing adapter.

4. The input is a read-only adapter that contains types you can convert from. Then

add the converted representation to the existing adapter. This case should not
happen in practice because all subclasses of AdapterCell are writeable and
implement RWAdapterValue.

5. The input is not an adapter cell but can be converted into your representation.
Then create an adapter cell corresponding to the input type (e.g. an
SdfAdapterCell or a SmilesAdapterCell) and add your representation to the
adapter. Do not create your own adapter cell and add the original
representation to it!

If you create new molecules or modify existing molecules, you must create a

completely new column (or override the input column) using your own adapter cell

implementations.

 else if (type.isCompatible(SdfValue.class) {

 return new CDKTypeConverter(SdfAdapterCell.TYPE) {

 public DataCell convert(final DataCell source) throws Exception {

 SdfValue sdf = (SdfValue) source;

 AdapterCell ac = SdfCellFactory.createAdapterCell(sdf.getSdfValue());

 return ac.cloneAndAddAdapter(parseMolecule((SdfValue) source)));

 }

 };
 }

 else if (type.isCompatible(RWAdapterValue.class) &&
 (type.isAdaptable(SmilesValue.class) || type.isAdaptable(SdfValue.class))) {

 DataType resultType = type.createNewWithAdapter(CDKValue.class);
 return new CDKTypeConverter(resultType) {

 public DataCell convert(final DataCell source) throws Exception {

 RWAdapterValue adapter = (RWAdapterValue) source.
 return adapter.cloneAndAddAdapter(

 parseMolecule(adapter.getAdapter(SdfValue.class|SmilesValue.class),
 CDKValue.class);
 }

 };
 } …

KNIME Noding Guidelines – Page 20

NODE CHECKLIST

for __

CODE

Yes No N/A

 load/save internals implemented if necessary

 Proper progress reporting (percentage or at least messages)

 Checks cancelation regularly during execute

 Deletes temporary objects before execute finishes

 If node has non-data ports, it handles null PortObjects

 Proper handling of missing values

 Uses ColumnRearranger whenever possible

DOCUMENTATION

Yes No N/A

 Node description matches node functionality

 Node description is understandable

 Port description(s) and port name(s) exist

 Node has its own icon

 Node's type (source, learner, etc.) is specified correctly

 View names look nice in context menu

 Port names look nice in context menu

DIALOG

Yes No N/A

 If node is not fully connected

 allows configuration with useful settings or does not appear at all

 If node is fully connected

 has default settings

 after saving, closing, and re-opening the workflow the dialog shows the
same settings

 Labels and/or descriptions are correct and understandable

 Layout is nice

 Resizing the dialog doesn't mess up the dialog

 If dialog has sub-dialogs they are modal and don't disappear in background

 If node applies auto-guessing and is immediately executable

 opening and closing the dialog while the node is executed does not
change settings, i.e. node stays executed

KNIME Noding Guidelines – Page 21

VIEW

Yes No N/A

 If node is not executed

 view shows correct content or message that no content is available

 no exceptions are thrown (in event dispatch thread)

 If node is executed

 View has proper window title

 Hiliting works as expected

 Standard colors/decorations are used for

 Normal data point

 Selected data points

 Hilited data points

 Colored data points (according to Color Manager)

 If the view has sub-dialogs they are modal and don't disappear in
background

 After the node is reset,

 view show correct content

 no exceptions are thrown (in event dispatch thread)

EXECUTION

Yes No N/A

 Node handles empty tables gracefully

 Node handles table with no columns gracefully

 Node handles table with no rows gracefully

 After re-opening a saved workflow with the node in executed state

 node’s state is restored

 no error messages are shown on the node

 view(s) show correct (same) content

 After re-opening a saved workflow with the node in configured state

 node’s state is restored

 no error messages are shown on the node

 view(s) show correct (same) content

 node can be executed right away

TESTFLOWS

Yes No N/A

 Testflow(s) with Disturber node exist

